Computer-Designed Rocker Protein World's First to Biomimic Ion Transport




Supersized Science show

Summary: Host Jorge Salazar reports from the Texas Advanced Computing Center an interview with Michael Grabe, an associate professor in the Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute at the University of California, San Francisco. For the first time ever, scientists designed completely from scratch a protein molecule that behaves like a slice of life. It mimics a natural protein found in living cells that transports ions across a cell membrane. The cell membrane surrounds living   cells like an envelope. And ion transport through the membrane helps keep us alive. It lets nutrients in and waste out of cells, and it also transmits signals between nerve cells of the brain and spinal cord. Scientists used the Stampede supercomputer at TACC to model the stability and dynamics of the designed protein. They did this with an allocation through XSEDE, the Extreme Science and Engineering Discovery Environment, funded by the National Science Foundation. The researchers published their results in the journal Science in December 2014.  This research has wide potential application, such as targeting medicines more specifically into cancer cells and driving charge separation potentially for harvesting energy for batteries.