#49:Better Connected:Powering The Future




The Network Podcast show

Summary: It’s expected that tens of billions of devices will be hooked up and talking to each other by 2020. But what is going to power all of them? And, does it automatically follow that the communications will take place over the public digital highway? In a laboratory in Cambridge, UK, scientists and engineers have been working up some answers. If the forecasters are to be believed, there will be 50 billion ‘things’ connected and sharing data over networks by the year 2020. But for this to happen, some fundamental issues need to be addressed. One is how these devices will be connected. Another is whether and to what extent these use the public Internet. A further and often overlooked question is how some of these devices will be powered. For example, if advanced health monitoring means more devices being implanted in people’s bodies, it would be safer and more viable long-term if these sensors didn’t need a battery. Similarly, if monitoring devices are to be incorporated within the fabric of new buildings to monitor for wear and tear, they will need a power source that will keep the embedded technology online for the lifetime of that building – which could be 100 years or more. A technology innovation company in Cambridge in the UK is busy addressing all of these issues. Most of the 300+ people who work at The Technology Partnership are scientists and engineers. They spend their time designing and developing next-generation technologies which commercial partners then take to market. A number of TTP’s activities currently have direct relevance to the emergence of an Internet of Things (IoT), from its work in wireless communications to consumer products and medical device design. TTP prefers to think of the Internet of Things as a world of ‘Connected Devices’. It is a subtle distinction, but it acknowledges that many of the devices won’t be connected to the public Internet because of the sensitivity of the content they are transmitting. Rather, they may interact by way of closed networks or specialist cloud-based services. In other cases, objects will communicate directly with other devices such as smartphones using short-range wireless connections. The opportunity associated with connecting inanimate objects over a network, or directly to other devices, is that they can then be controlled remotely or interrogated for information, creating the potential for new types of use and for value-added services. The object must first have a digital microprocessor, interface and/or a sensor to enable the interaction. After that, it needs to be connected to a system or application that can understand and interact with the device – whether that’s a particular PC, a cloud-based service, a mobile app downloaded onto a smartphone, or another device or machine. Dr Antony Rix, a senior consultant within TTP’s Communications and Wireless group, notes that for connected device solutions to be commercially viable, the value of the monitoring activity has to outweigh the cost of providing it. It is this that influences much of TTP’s work. “We’re used to connecting a mobile phone or tablet directly to the Internet via a wireless mobile network, but this is an expensive way of connecting devices,” he says. “If it involves LTE or 3G, you’re talking about adding tens of dollars to the product price. But there are lots of other ways of connecting.” For machine to machine (M2M) communications over a cellular network, an alternative is to use cheaper 2G/GSM networks, for example. “The typical cost of a 3G module so that you can connect a product to the Internet is $30-50; with GSM/GPRS it’s less than $10,” Dr Rix notes. With other connectivity alternatives, such as Bluetooth Smart, the cost could fall to $1 or less, he adds. “It’s this drop in cost that means applications start to make sense commercially – so that it becomes worth connecting the devices.” Other options might include use of specialist wireless technology. One of TTP’s o