November 13. The South Atlantic opens




History of the Earth show

Summary: Base from NOAA (annotated by Gibson) It was the obvious good fit of the coastlines of Africa and South America that helped lead Alfred Wegener to his theory of continental drift back in 1915. The South Atlantic has a different history from the North Atlantic, not least in being rather younger than the northern portion. The geometry of the coasts reflects differences in the way parts of the South Atlantic opened. The near east-west margin of West Africa turns to north-south at the Gulf of Guinea, the corner where the northeastern tip of South America used to be attached. In fact, that corner is probably really a triple junction, a tectonic location where three relatively distinct rifts began, radiating away from the location of the Niger Delta today. The combined South America-Africa continent, which we’ve referred to previously as West Gondwana, began to separate in several places during the Jurassic. In the north, the irregular boundary between West Gondwana and North America left a piece of West Gondwana attached to North America – Florida. And the zone between West Africa and northern South America began to crack, too. In the south, also during the Jurassic, we talked last month about the separation of East Gondwana, and that also put the beginnings of a rift between southern Africa and southern South America. But the middles of what are now Africa and South America were still attached to each other until the Cretaceous. At the corner, today’s Gulf of Guinea, two pull-apart rifts started. One ultimately became the rift that makes up most of the South Atlantic, with the north-south margin of Africa from Gabon down to South Africa on one side and Brazil on the other. The other rift was within the African continent, extending northeast from today’s Niger Delta, practically all the way across Africa, through Chad and Sudan to the Red Sea. In places this was a pull-apart zone, especially in Nigeria, where it is called the Benue Rift, but further into Africa it is a tear or shear zone, with the northern and southern parts of Africa moving alongside each other. If this rift had not failed, we would have two continents today instead of one single African continent. Another shear zone developed in the third branch of the triple junction. This branch ran west from the Niger Delta today, along the east-west trending coast of West Africa, from Nigeria to Ghana to the Cote D’Ivoire to Liberia. On the southern side of this zone, the northern coast of Brazil, from the tip at Cabo San Roque up to the mouth of the Amazon, that section was sliding to the west. So the tectonic boundary between South America and Africa was mostly strike-slip faults, also called transform faults, where the two big blocks slid alongside each other and ultimately parted, leaving the Middle Atlantic Ocean in their wake. The southern Atlantic Ocean was formed in a more straightforward way, with the two sides pulling apart more or less perpendicularly from the spreading center at the Mid-Atlantic Ridge. But as usual, there was plenty of variety within those overall general parameters. In the southern, relatively simple rifted system, things were complicated by two hotspots that poured basalt and other volcanics into the widening ocean and on the adjacent continents as well. We talked about one of them, the Tristan Hotspot that produced the Parana Basalts and the Rio Grande-Walvis Seamount Chain, the other day. (November 11) The second one was further north, and today it is reflected in active volcanoes like Mt. Cameroon in Africa and St. Helena, the volcanic island near the Mid-Atlantic Ridge. Between them under the ocean, the St. Helena seamount chain represents the movement of the African Plate over the hotspot as the South Atlantic opened. And there is a conjugate submarine ridge on the South American side too. The big deal about these two volcanic centers, the Tristan and St. Helena hotspots, is that as the South Atlantic was opening, the volcanics erupted from